Search results for "data analysis [methods]"

showing 10 items of 48 documents

PDB: A pictorial database oriented to data analysis

1993

The paper describes a new pictorial database oriented to image analysis, implemented inside the MIDAS data analysis system. Pictorial databases need expressive data structures in order to represent a wide class of information from the numerical to the visual. The model of the database is relational; however, a full normalization is not achievable, owing to the complexity of the visual information. The paper reports the general design and notes on the software implementation. Preliminary experiments show the performance of the pictorial database. Copyright © 1993 John Wiley & Sons, Ltd

DatabaseSettore INF/01 - InformaticaRelational databaseComputer scienceNormalization (image processing)InformationSystems_DATABASEMANAGEMENTcomputer.software_genreData structureDatabase designPictorial databaseData analysis systemSystems designInformation retrievalManagement and queryRelational databaseDatabase theoryImage analysicomputerSoftwareDatabase model
researchProduct

A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

2018

Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The Europea…

Ecologia dels llacsData DescriptorWater resourcesAquatic Ecology and Water Quality Managementthermocline010504 meteorology & atmospheric sciencesvesien tilaphytoplankton pigments010501 environmental sciences01 natural sciencesEcosystem servicesympäristön tilaBU Contaminants & ToxinsEnvironmental monitoringLimnologylakesddc:550Canvi climàticGeosciences MultidisciplinarySurveyComputingMilieux_MISCELLANEOUSddc:333.7-333.9Climate-ChangeEurope LakesEnvironmental resource management[Belirlenecek]Climate-change ecologyplanktonEutrophication6. Clean waterComputer Science ApplicationsEuropeDisparate systemdatainternationalBloomStatistics Probability and UncertaintyEuropaEnvironmental MonitoringInformation Systemsenvironmental variablesStatistics and ProbabilityBiological pigmentsFitoplànctonClimate ChangeCyanotoxinsta1172BU Contaminanten & ToxinesClimate changeobservation designLibrary and Information SciencesCyanobacteriajärvetEducationEuropean Multi Lakecyanotoxinsddc:570Life ScienceEcosystem14. Life underwaterdatabase creation objectivesyanobakteerit0105 earth and related environmental sciencesWIMEKbusiness.industrydata analysis objectivenutrientmuuttujatPigments Biological15. Life on landClimatic changesdataset ; environmental variables ; phytoplankton ; pigments ; cyanotoxinsmikrolevätAquatische Ecologie en WaterkwaliteitsbeheerEnvironmental variablesPhytoplankton pigmentsMultidisciplinär geovetenskapClimatic changeWater resourcesLakes13. Climate actionNutrient pollutionPhytoplanktonEnvironmental science[SDE.BE]Environmental Sciences/Biodiversity and EcologybusinessEutrophicationLake ecologyCanvis climàticsWatersScientific Data
researchProduct

THE USE OF REGRESSION ANALYSIS IN MARKETING RESEARCH

2012

The purpose of the paper is to illustrate the applicability of the linear multiple regression model within a marketing research based on primary, quantitative data. The theoretical background of the developed regression model is the value-chain concept of relationship marketing. In this sense, the authors presume that the outcome variable of the model, the monetary value of one purchase, depends on the clients’ expectations regarding seven dimensions of the company’s offer. The paper is structured in two parts. In the first part, a brief literature review enumerates the main multivariate data analysis methods used in marketing research and describes the general linear multiple regression mo…

Linear Multiple Regression Marketing Research Multivariate Data Analysis Methods Relationship MarketingStudies in Business and Economics
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

Hadronic τ Decays as New Physics Probes in the LHC Era

2019

We analyze the sensitivity of hadronic tau decays to non-standard interactions within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). Both exclusive and inclusive decays are studied, using the latest lattice data and QCD dispersion relations. We show that there are enough theoretically clean channels to disentangle all the effective couplings contributing to these decays, with the $\tau \to \pi\pi\nu_\tau$ channel representing an unexpected powerful New Physics probe. We find that the ratios of non-standard couplings to the Fermi constant are bound at the sub-percent level. These bounds are complementary to the ones from electroweak precision observable…

Particle physicsdata analysis methoddispersion relationPhysics beyond the Standard ModelLattice field theoryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)effective field theoryweak interaction: coupling constant0103 physical sciencesquantum chromodynamicsEffective field theory010306 general physicstau: hadronic decayParticle Physics - PhenomenologyQuantum chromodynamicsPhysicsLarge Hadron Colliderelectroweak interactionnew physicsElectroweak interactionHigh Energy Physics::Phenomenologylattice field theoryhep-phObservablecorrection: vertexsensitivitytau --> pi pi neutrino/tauHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Elementary Particles and Fieldslepton: universality: violationHigh Energy Physics::ExperimentLepton
researchProduct

Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

2021

The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…

PhotonPhysics::Instrumentation and DetectorsAstronomyElectron01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)mass [cosmic radiation]surface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: cosmic radiationInstrumentationMathematical PhysicsPhysicsAGASAPhysicsSettore FIS/01 - Fisica SperimentaleDetectorcosmic radiation [photon]Astrophysics::Instrumentation and Methods for AstrophysicsMonte Carlo [numerical calculations]electromagnetic [showers]Augerobservatorycosmic radiation [electron]Analysis and statistical methodsnumerical calculations: Monte CarloAnalysis and statistical methodperformancepositron: cosmic radiationatmosphere [showers]Cherenkov detectordata analysis methodAnalysis and statistical methods; Calibration and fitting methods; Cherenkov detectors; Cluster finding; Large detector systems for particle and astroparticle physics; Pattern recognitionCherenkov counter: waterairneural networkAstrophysics::High Energy Astrophysical Phenomena610FOS: Physical sciencesCosmic raycosmic radiation [positron]cosmic radiation: massCalibration and fitting methodNuclear physicsstatistical analysisPattern recognition0103 physical sciencesshowers: electromagneticddc:530ddc:610High Energy Physics010306 general physicsZenithPierre Auger ObservatoryCalibration and fitting methodscosmic radiation [muon]Muonshowers: atmosphere010308 nuclear & particles physicsdetector: surfacehep-exLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]Cherenkov detectorsCluster findingelectron: cosmic radiationRecurrent neural networkmuon: cosmic radiationLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::ExperimentRAIOS CÓSMICOSexperimental results
researchProduct

The Monte Carlo simulation of the Borexino detector

2017

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readout
researchProduct

Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100

2017

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…

Physics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonRecoilWIMP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]nucleus: recoilPhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsWIMP nucleon: cross sectionInstrumentation and Detectors (physics.ins-det)Excited stateWeakly interacting massive particlesTPCNucleonchannel cross section: measuredsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringspin: dependenceNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emission0103 physical sciencescross section: inelastic scattering[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsWIMP nucleon: inelastic scattering010308 nuclear & particles physicsS030DP2WIMP nucleus: interactionGran SassochemistryDirect Searchtime projection chamber: xenonHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

Physics and Astronomy (miscellaneous)AstronomyGravitational wave detection Gravitational wave sources Gravitational waves Astronomical black holesagn discsAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldsstar-clustersgravitational waves black holesgravitational waves; black holesAGN DISCSgravitational waves; black holes; LIGO; Virgoblack holegeneral relativityLIGOgravitational waveQCQBPhysicsSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)GRAVITATIONAL WAVE-FORMSPROGENITORSCOMPACT BINARIESblack hole: spinPhysicsPERTURBATIONSgravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical PhenomenaMETALLICITYmass: asymmetrymetallicitydata analysis methodGeneral relativityMERGERSgr-qcAstrophysics::High Energy Astrophysical PhenomenamultipolePREDICTIONSFOS: Physical sciencesgravitational wavesblack holesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGravitational wavesGeneral Relativity and Quantum CosmologyTheory of relativityBinary black holeSettore FIS/05 - Astronomia e AstrofisicaAstronomical black holesbinary: coalescence0103 physical sciencesnumerical methodsddc:530STAR-CLUSTERS010306 general physicsnumerical calculationsSTFCAstrophysiqueGravitational wave sourcesScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKblack hole: massMass ratioblack holesLIGOEVOLUTIONgravitational radiation detectorBlack holedetector: sensitivityPhysics and Astronomyblack hole: binaryrelativity theorygravitational radiation: emissionmass ratioMultipole expansion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physics
researchProduct